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Black-box optimizers using multivariate 
normal samples 

• Evolution Strategies (Rechenberg, Schwefel, and many more) 

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 
(Hansen et al.)

• Gaussian Adaptation (GaA) (Kjellstrom et al. , Mueller et al.)

• Natural Evolution Strategies (NES) (Wierstra et al.)

• Estimation of Distribution Algorithms (EDA’s) 

• Cross-Entropy method in continuous domains (Rubinstein et al.)

• ...
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Black-box optimization with GaA

A

Maximization of the entropy of the Gaussian distribution.

Prob(x ∈ A) = P

Constraint:

Entropy:

H(N ) = log
��

(2πe)n det(C)
�
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Black-box optimization with GaA

A

Maximization of the entropy of the Gaussian distribution.

Prob(x ∈ A) = P

Constraint:

Key idea for a general optimizer: Introduce adaptive fitness 
thresholds, define convergence criteria and restart GaA with 
slower reduction of thresholds

Entropy:

H(N ) = log
��

(2πe)n det(C)
�
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Black-box optimization with GaA

Illustration on Rosenbrock’s valley function in n=20
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Black-box optimization with linear constraints

min
x∈Rn

f(x)

s.t. Ax ≤ b .

• A is a mxn matrix and b is a m-dimensional vector describing m 
constraints

• Geometrically, these describe polyhedra, cones, half-planes...  

• Box constraints are a special case of linear constraints

• Positive orthant x≥0

• Standard simplex 
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Black-box optimization with truncated normals

• Simplest idea: Rejection sampling
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Black-box optimization with truncated normals

• Simplest idea: Rejection sampling

 Only works if acceptance ratio is high. In high dimensions this 
is often impossible, hence the sampling becomes exponentially 
slow 
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Black-box optimization with truncated normals

• Simplest idea: Rejection sampling

 Only works if acceptance ratio is high. In high dimensions this 
is often impossible, hence the sampling becomes exponentially 
slow 

• Alternative idea: Gibbs sampling (Geman and Geman, 1984)

 
Only works if all conditional distributions of a multivariate 
distributions are known! This is true for truncated normal 
distributions, T-distributions, etc. 

Sampling cost is polynomial in the dimension
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Gibbs sampling for truncated multivariate normals

• First sampler for multivariate truncated normals introduced by Geweke, 1991 
only for box constraints 

• Generalization for arbitrary linear constraints by Rodriguez-Yam et al, 2004, 
but not recognized and no implementation is available
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Gibbs sampling for truncated multivariate normals
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Figure 3: Gibbs sampling from a multivariate Gaussian density subject to linear constraints. a) Two-
dimensional Gaussian subject to three inequality constraints. b) The conditional distribution of x1

given x2 = x∗ is a truncated Gaussian. c) Gibbs sampling proceeds iteratively by sweeping over
the dimensions and sampling from the conditional distribution in each dimension conditioned on the
current value in the other dimensions.

Task The objective is to factorize the data matrix in order to find a number of source images that
explain the data. Ideally, the sources should correspond to the original digits. We cannot hope to
find exactly 10 sources that each corresponds to a digit, because there are large variations as to how
each digit is written. For that reason, we used 40 hidden sources in our experiments, which allowed
4 exemplars on average for each digit.

Method For comparison we factorized the mixed image data using two standard matrix factor-
ization techniques: ICA, where we used the FastICA algorithm, and NMF, where we used Lee and
Seung’s multiplicative update algorithm [3]. The sources determined using these methods are shown
in Figure 4.c–d.

For the linearly constrained Bayesian matrix factorization, we used an isotropic noise model. We
chose a decoupled prior forA andB with zero mean, µ = 0, and unit diagonal covariance matrix,
Σ = I . The hidden sources were constrained to have the same range of pixel intensities as the
image mixtures, 0 ≤ aik ≤ 1. This constraint allows the sources to be interpreted as images since
pixel intensities outside this interval are not meaningful. The mixing coefficients were constrained
to be non-negative, bkj ≥ 0, and sum to unity,

∑K
k=1 bkj = 1; thus, the observed data is modeled

as a convex combination of the sources. The constraints ensure that only additive combinations of
the sources are allowed, and introduces a negative correlation between the mixing coefficients. This
negative correlation implies that if one source contributes more to a mixture the other sources must
correspondingly contribute less. The idea behind this constraint is that it will lead the sources to
compete as opposed to collaborate to explain the data. A geometric interpretation of the constraints
is illustrated in Figure 1.h: The data vectors are modeled by a convex polytope in the non-negative
unit hypercube, and the hidden sources are the vertices of this polytope. We computed 10, 000Gibbs
samples, which appeared sufficient for the sampler to converge. The result of the matrix factorization
are shown in Figure 4.e, which displays a single sample ofA at the last iteration.

Results In ICA (see Figure 4.c) the sources are not constrained to be non-negative, and therefore
do not have a direct interpretation as images. Most of the computed sources are complex patterns,
that appear to be dominated by a single digit. While ICA certainly does find structure in the data,
the estimated sources lack a clear interpretation.

The sources computed using NMF (see Figure 4.d) have the property which Lee and Seung [3]
refer to as a parts-based representation. Spatially, the sources are local as opposed to global. The
decomposition has an intuitive interpretation: Each source is a short line segment or a dot, and the
different digits can be constructed by combining these parts.

Linearly constrained Bayesian matrix factorization (see Figure 4.e) computes sources with a very
clear and intuitive interpretation: Almost all of the 40 computed sources visually resemble hand-
written digits, and are thus well aligned with the sources that were used to generate the mixtures.
Compared to the original data, the computed sources are a bit bolder and have slightly smeared

7

(from Schmidt, 2009)

• First sampler for multivariate truncated normals introduced by Geweke, 1991 
only for box constraints 

• Generalization for arbitrary linear constraints by Rodriguez-Yam et al, 2004, 
but not recognized and no implementation is available
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Gibbs sampling for truncated multivariate normals

p(x) ∝ NΩ(m,C) =

�
N (m,C) if Ax ≤ b
0 otherwise,

Let x ∼ NΩ(m,C) be an n-dimensional multivariate normal vector. We first
decompose C = σ2Σ with σ a scalar. Let T ∈ Rn×n be a matrix of full rank
such that TΣTT = I where I denotes the n-dimensional identity matrix. T can
be found by Cholesky or eigenvalue decomposition of Σ because the rescaled
covariance matrix Σ is positive definite. Let z = Tx and c = Tm.
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Gibbs sampling for truncated multivariate normals

p(z) ∝ NS(c, σ
2I) =

�
N (c, σ2I) if Dz ≤ b
0 otherwise,

where D = AT−1 and S = {z ∈ Rn : Dz ≤ b} and the original x can be
recovered by x = T−1z. This reformulation drastically simplifies the sampling
distribution but not the constraints.
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Gibbs sampling for truncated multivariate normals

Let z = [z1, . . . , zj , . . . , zn]T and z−j = [z1, . . . , zj−1, zj+1, . . . , zn]T . A Gibbs
sampler for the multivariate distribution thus generates in each sweep compo-
nents zj of z according to

p(zj |z−j) = NSj (cj , σ
2) ,

where Sj = {zj ∈ R, z ∈ Rn : Dz ≤ b}. Let D = [d1, . . . ,dj , . . . , ,dn] with
dj ∈ Rm and D−j the matrix D without the jth column dj . Sj can then be
computed from the set of at most m linear inequalities Sj = {zj ∈ R : djzj ≤
b − D−jz−j} the solution of which forms a one-dimensional convex set, i.e.
either an (left/right) open interval or a closed interval.
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p(x) ∝ NΩ(m,C) =

�
N (m,C) if Ax ≤ b
0 otherwise,

Ω

Gibbs sampling for truncated multivariate normals
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p(x) ∝ NΩ(m,C) =

�
N (m,C) if Ax ≤ b
0 otherwise,

Ω

p(z) ∝ NS(c, σ
2I) =

�
N (c, σ2I) if Dz ≤ b
0 otherwise,
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T−1

T

Gibbs sampling for truncated multivariate normals
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Gibbs sampling for truncated multivariate 
normals: Efficient Implementation

• MATLAB implementation for rapid prototyping

• FORTRAN90 implementation with Intel MKL functions and LAPACK/BLAS 
routines with mex interface for MATLAB

• Different modes of operations available dependent on whether the 
eigendecomposition of the covariance matrix is already known (as in CMA-ES 
and GaA)

• FORTRAN90 code could also be used for usage in R  
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Gibbs-sampling for truncated normal distributions
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Gibbs-sampling for truncated normal distributions
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Illustrative examples:  Sphere function cut by a 
hyperplane (tangent problem) and CMA-ES 

min
x∈Rn

fTR(x) =
�n

i=1 x
2
i

s.t. −
�n

i=1 xi + n ≤ 0 .

The optimal solution is x∗ = [1, . . . , 1]T

with objective function value fTR(x∗) = n.
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Illustrative examples:  Sphere function cut by a 
hyperplane (tangent problem) and CMA-ES 

• We chose x0 = [10, 10]T and step size σ0 = 1 and conducted 25 experiments. 

• Constrained CMA-ES has been stopped when the optimum was reached 
within ε< 1e−16

• Minimum, median, and maximum number of function evaluations are 764, 992, 
and 1346. 

• For comparison, the best combination of CMA-ES and a sophisticated meta-
model strategy for the constraints needs on average 3,432 function evaluations 
and 5,326 constraint evaluations (Kramer, 2010) 
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Illustrative examples: Linear functions over 
Klee-Minty cubes and GaA

max
x∈Rn

fKM(x) =
�n

i=1 xi

s.t. x1 ≤ 1

2
�k−1

i=1 xi + xk ≤ 2k − 1, k = 2, . . . , n

x ≥ 0

The optimal solution is located at x∗ = [0, 0, . . . , 1]T

with fKM(x∗) = 2n − 1.
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Illustrative examples: Linear functions over 
Klee-Minty cubes and GaA
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Illustrative examples: Linear functions over 
Klee-Minty cubes and GaA

• We chose x0 = [0,..,0]T (this is kind of the worst case) and r0 = 2n-1  and 
conducted 25 experiments for n=3,..,16. 

• Constrained GaA has been stopped when the optimum was reached within ε< 
1e−3.

• We observe a quadratic relation between dimension n and number of function 
evaluations.  
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Conclusions

• General framework for handling linear constraints for black-box optimizer that 
use the Gaussian as proposal distribution

• Key ingredients is an efficient Gibbs sampler for truncated multivariate 
Gaussians that has poly(n) complexity 

• Efficient implementation available in MATLAB and FORTRAN 90 with 
MATLAB mex interfacing

• Embedding in CMA-ES and GaA available, so called cCMA-ES and cGaA 

• Straight-forward generalization to convex quadratic and convex oracle 
constraints is possible
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