Escuela Técnica

Superior de Inceniería Informática

EVOLVE, May 2011

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software

Others

Metaheuristic Applications to Telecoms, Bioinf, Software, and other Domains

http://neo.lcc.uma.es

University of Málaga, Spain

2 of 44 Introduction (I) Index • **Objective** of a global optimization problem: New Models $f(\vec{x}) \rightarrow max$: find a vector \vec{x}^* such that $\forall \vec{x} \in M : f(\vec{x}) \leq f(\vec{x}^*) \coloneqq f^*$ **Parallel MetaH** 2.5 Hybrid MetaH objective value 1.5 2.0 **Multiobjective** Telecoms. 10 **Bioinformatics** -10~-10 х2 Software x 1 • Minimizing is also possible • Vectors can map to other data structures **Others** 24/05/2011

Introduction (II)

NOUN VERB NOUN

VERB

like

NOUN

Rice

NOUN VERB PREP NOUN

NOUN VERB

Rice flies PREP NP

sand

like NOUN

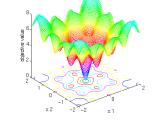
Index

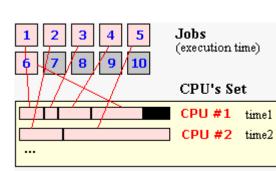
New Models

Parallel MetaH

Hybrid MetaH

Multiobjective


Telecoms.

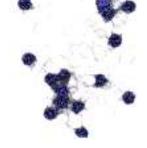

Bioinformatics

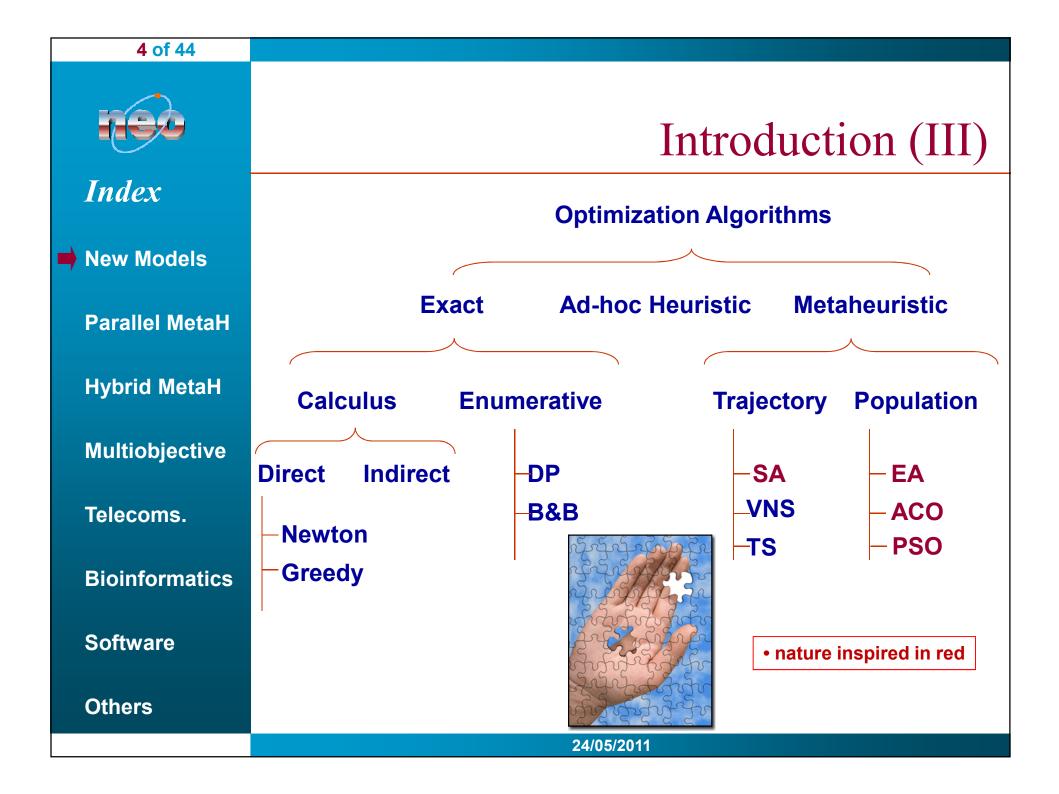
Software

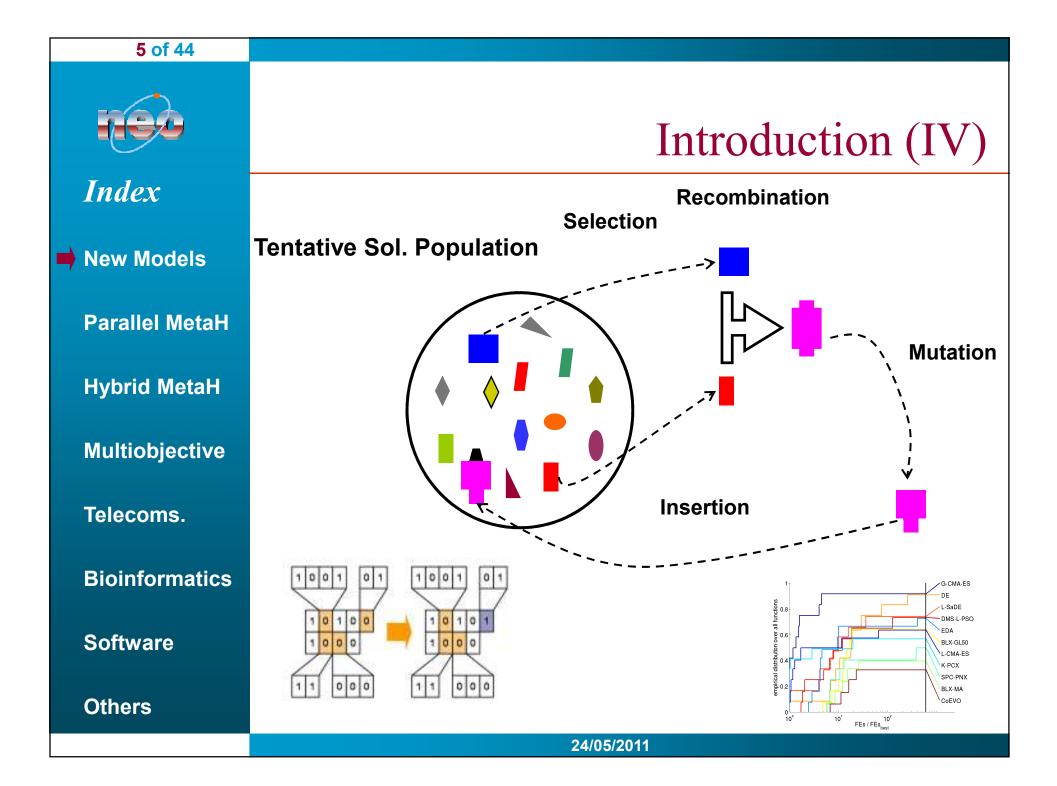
Others

Where can optimization problems be found?

Distribute "n" electrons on a sphere


NOUN NOUN


flies


Rice

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software

Others

Introduction (V)

Evolutionary Algorithm

t := 0;initialize [P(t)];evaluate [P(t)];while not end condition do P'(t) := variation [P(t)];evaluate [P'(t)]; $P(t+1) := selection [P'(t) \cup Q];$ t := t+1;end while

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective


Telecoms.

Bioinformatics

Software

Others

Index

Introduction (VII) NAS: Natural Advanced Solutions

Four main ways of making an algorithm more efficient and accurate:

New Models

Parallel MetaH

Hybrid MetaH

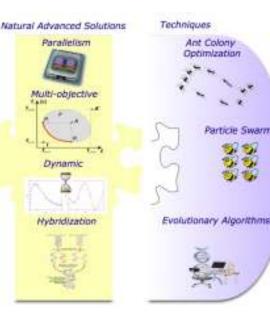
Multiobjective

Telecoms.

Bioinformatics

Software

Others


• Parallel: Clusters, Grid computing, multicore, FPGAs, GPUs...

- Hybrid: Combining algorithms, operators, representations: problem knowledge
- Multiobjective: Modelling explicitly several conflicting objective functions with Pareto's concept of dominance

• Dynamic:

Solve a problem that changes in time and adapt previous solutions to the new scenarios

Parallel Metaheuristics

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

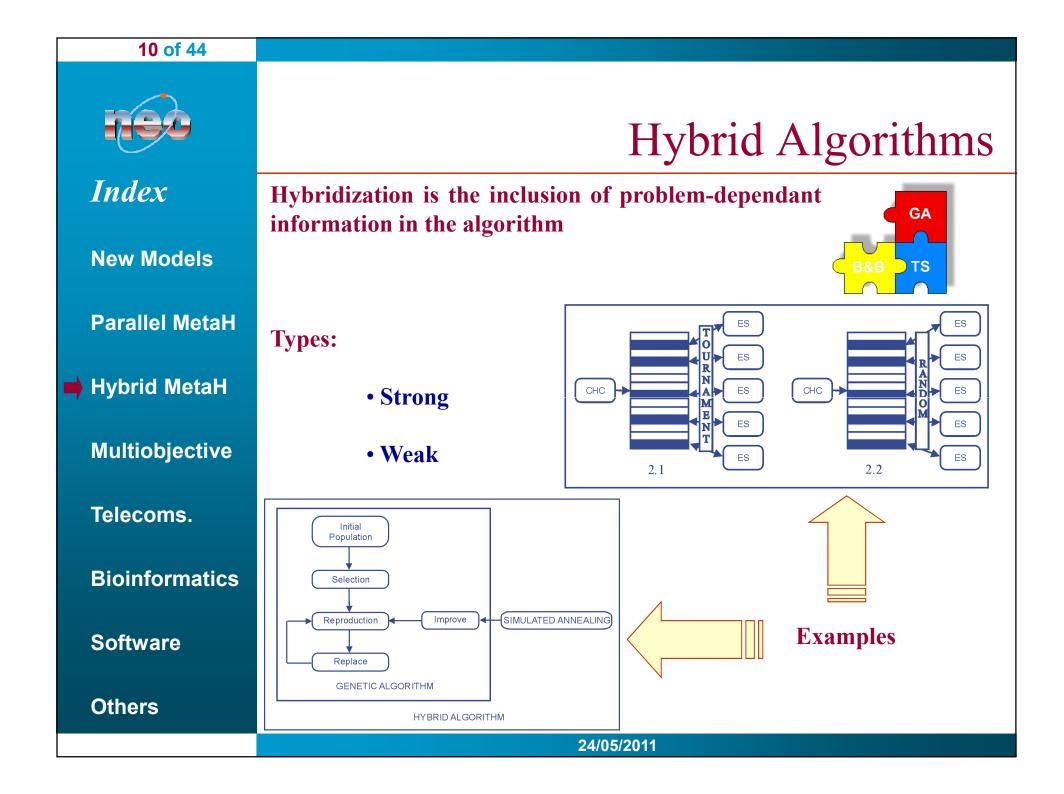
Bioinformatics

Software

Others

Paralellism and Metaheuristics:

The increasing availability of new kinds of **CPUs** the parallel and nature of metaheuristics have allowed the fast development of parallel metaheuristics



- Allow to tackle more complex problems and/or larger instances GPU
- Allow to reduce the execution time
- Allow to improve the quality of the found solutions

Examples

multicore

E. Alba (ed.), Parallel Metaheuristics: A New Class of Algorithms, *Wiley & Sons*, 2005

Multiobjetive Optimization

Index	Most real word optimization problems require to optimize more then one single function								
New Models	 than one single function Multiobjective Optimization Problems (MOPs) 								
Parallel MetaH	Multobjective optimization searches for a set of solutions Pareto Optimal Set Their representation in the objective space is known as Pareto front 								
Hybrid MetaH	Metaheuristics provide a subset of the Pareto optimal set.								
Multiobjective	Two goals Convergence to the true Pareto front Diversity of the solutions along the true Pareto front 								
Telecoms.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
Bioinformatics	$f_2(\vec{x}) = (x_1 - 5)^2 + (x_2 - 5)^2 $ Subject to: $35 = 30$ $30 = 25$ $30 = 25$								
Software	$g_{1}(\vec{x}) = (x_{1}-5)^{2} + x_{2}^{2} - 25 \le 0$ $g_{2}(\vec{x}) = -(x_{1}-8)^{2} - (x_{2}+3)^{2} + 7.7 \le 0$ $0 \le x_{1} \le 5$ $c_{2}(\vec{x}) = -(x_{1}-8)^{2} - (x_{2}+3)^{2} + 7.7 \le 0$ $c_{3}(\vec{x}) = -(x_{1}-8)^{2} - (x_{2}+3)^{2} + 7.7 \le 0$								
Others	$0 \ge x_2 \le 3 \qquad 0 \qquad$								
	24/05/2011								

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Multiobjetive Optimization: Open Issues

- Fitness assignment
 - Multiobjective metaheuristics assign a unique value to the solutions used as "fitness" to compare solutions
 - E.g.: Ranking in NSGA-II or strength in SPEA2
- Maintaining diversity
 - Additional information is needed to know the density of solutions around a given one
 - E.g.: Hypercube in PAES, crowding distance in NSGA-II

- Elitism

• The general approach uses an auxiliary population, sometimes called *archive*

- Quality indicators

- Metrics are needed to measure convergence and/or diversity
 - > Hypervolume (convergence and diversity)
 - Generational Distance (convergence)
 - > Spread (diversity)

24/05/2011

Telecoms.

Bioinformatics

Software

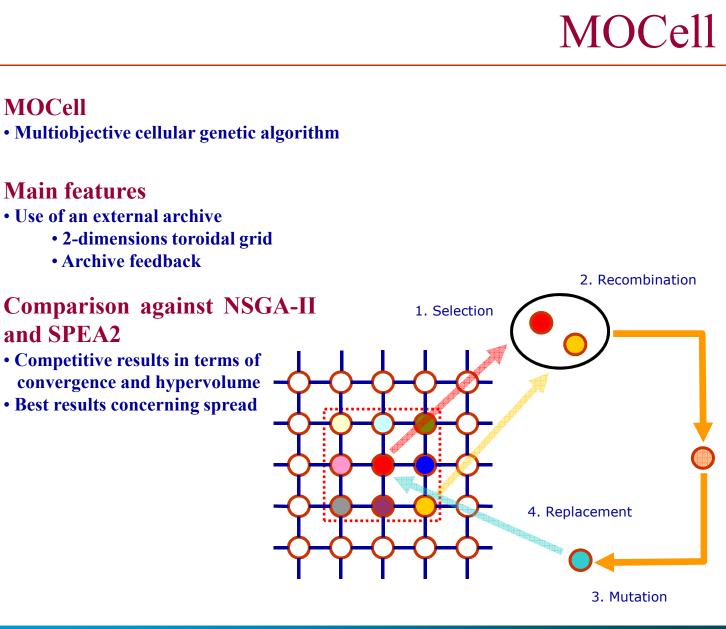
Others

Index

New Models

Parallel MetaH

Hybrid MetaH


Multiobjective

Telecoms.

Bioinformatics

Software

Others

AbYSS

Index

New Models

Parallel MetaH

Hybrid MetaH

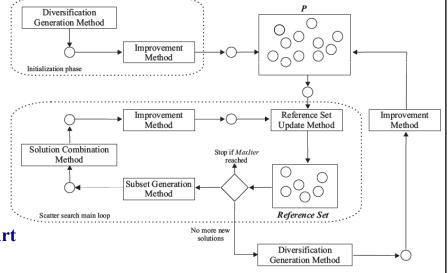
Multiobjective

Telecoms.

Bioinformatics

Software

Others


AbYSS • Archive based hYbrid Scatter Search

Basic idea

 Redefining the scatter search template to adapt it to multiobjective optimization

- External Archive to maintain good solutions
- Individuals of the external archive are moved to initial set in the re-start loop

Comparison against NSGA-II and SPEA2

- Competitive results in terms of convergence and hypervolume
- Best results concerning spread

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Bioinformatics

Telecoms.

Software

Others

Index

Multiobjective Optimization and Grid Computing

Motivation:

- There are many computers in the labs of the Computer Science Departament of the University of Málaga
 - Currently we directly control up to 400 processors
- Question: How can we use them together to solve multiobjective optimization problems?
- Using known message passing libraries (sockets, PVM, MPI) is not a solution
 - Machines are idle in the nights and during the weekends (and in holydays)
 - Variable availability during the day
- OUR APPROACH: using grid technologies


Grid computing systems used:

- Condor
- Globus
- Others: ProActive, BOINC

Issues of interest:

- Easiness of installation and administration
- Parallel programming models offered
- Programming languages available
- Use of idle CPU cycles (opportunistic computing)
- Parallel performance

Index

New Models

Parallel MetaH

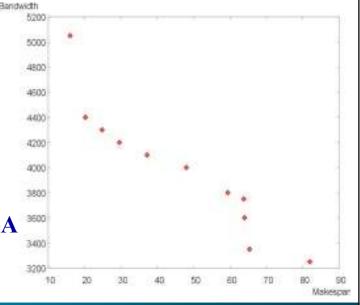
Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software


Others

Optimal Broadcasting in MANETs

- MANETs

- Stations usually are laptops, handholds, PDAs, or mobile phones
- Mobility of stations → dynamic topology of the network
- Metropolitan MANETs
 - High Density Areas (HDA): areas with high station density
 - HDAs can appear and disappear from the network
- Optimization Problem

 Fine-tune of a broadcasting strategy called DFCN
 Torget: metropoliton MANE
 - Target: metropolitan MANETs
- Multiobjective metaheuristics
 EAs: NSGA-II, SPEA2, cMOGA
 - Scatter Search: AbYSS
 - PSO: MOPSO

New Models

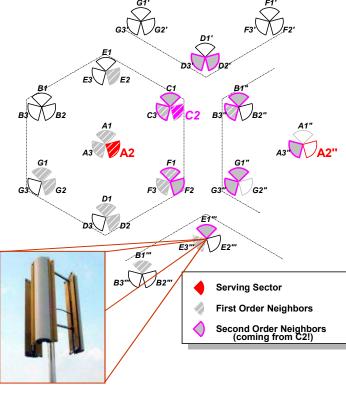
Parallel MetaH

Hybrid MetaH

Multiobjective

Bioinformatics

Telecoms.


Software

Others

Index

Automatic Frequency Planning in GSM Networks

- Problem definition
 - Allocate frequencies (few dozens) to elementary transceivers (TRXs) of the network (thousands)
 - Frequency reuse is mandatory \rightarrow this provokes interference \rightarrow
 - **QoS degradation**
 - Real world instances of GSM networks currently in use
- GSM architecture
 - Base Transceiver Stations
 - Sectors
 - TRXs
- Metaheuristics used
 (1,λ) EA, ACO
 Ongoing:
 ssGA
 Grid compute
 - Grid computing with Condor

New Models

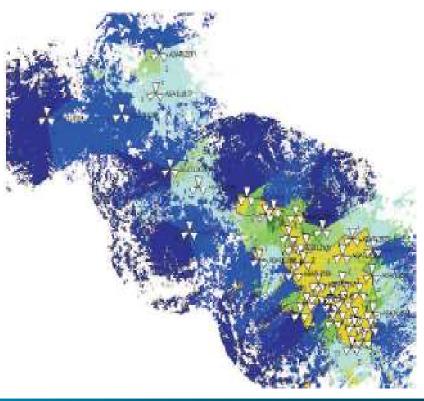
Parallel MetaH

Hybrid MetaH

Multiobjective

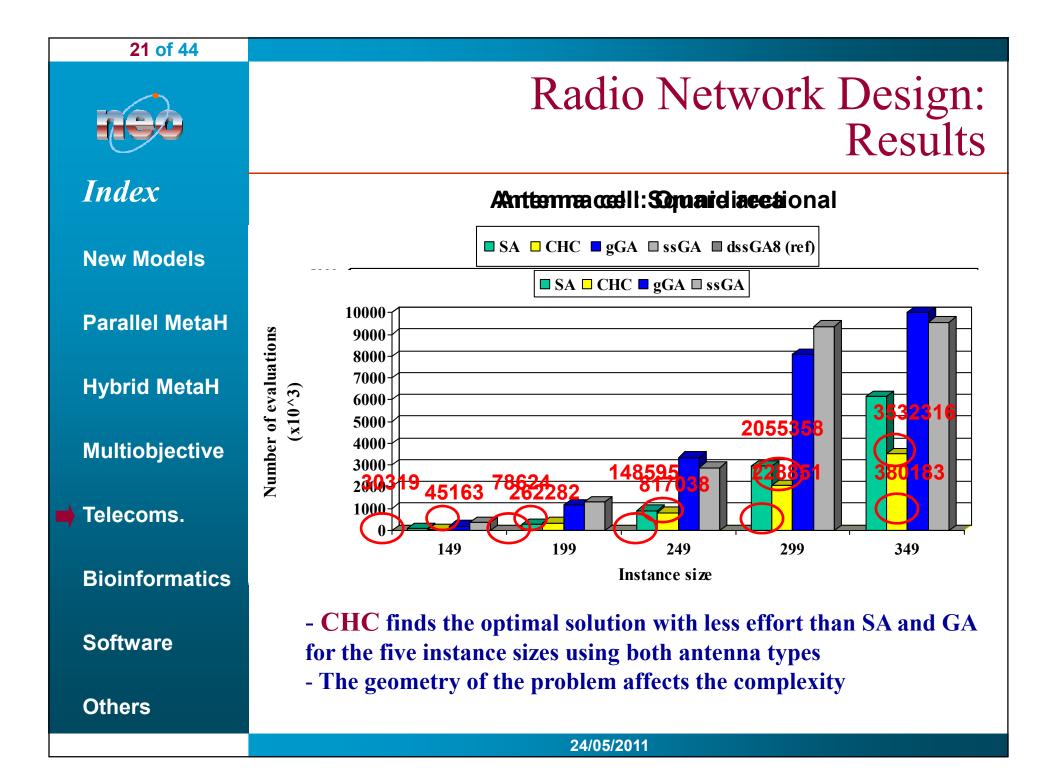
Bioinformatics

Telecoms.


Software

Others

Index


Automatic Cell Planning in 2G/3G Networks

- Problem definition
 - Positioning the sites of the network
 - Dimensioning a set of parameters for each antenna
 - Real world instances of cellular networks
 - Highly demanding computational costs
- Objectives
 - Number of sites
 Quality of service
 Interferences
 - Traffic hold
- Metaheuristics used - PAES, ssGA - New work in: - AbYSS - MOCell - Gridifying with Condor/MW

19 of 44		
		Radio Network Design: Problem
Index	Task:	Select geographical locations for cellular antennae
New Models		from a list of 149 to 349 available locations
Parallel MetaH	Objectives:	Maximize the covered area (coverage) Minimize the number of antennae
Hybrid MetaH	Fitness:	$f(\vec{x}) = \frac{Coverage(\vec{x})^{\alpha}}{Number \ of \ antennae(\vec{x})} \text{with} \ \alpha = 2$
Multiobjective		
➡ Telecoms.	Models:	Terrain -> Square grid with 287×287 points Antenna coverage -> Three shapes
Bioinformatics		
Software		
Others		
		24/05/2011

20 of 44						
		Radio Network Design: Algorithms				
Index	SA:	Trajectory technique				
New Models		Uses mutation to generate S_n from S_a Replaces S_a with S_n with probability P				
Parallel MetaH		$P = \frac{2}{1 + e^{\frac{fitness(S_a) - fitness(S_n)}{T}}}$				
Hybrid MetaH	CHC:	Evolutionary algorithm				
Multiobjective	_	No mutation, HUX crossover with incest prevention Elitist selection, Cataclysmic mutation (restarting procedure)				
🛋 Telecoms.		Previous population				
Bioinformatics	Parents	s Offspring New individuals New population				
Software	GA:	v o				
Others	Mutation, two-point crossover Selection: Ranking (parents) + tournament (new population)					
		24/05/2011				

22 of 44		Wireless Sensor Networks: Problem
Index	Task:	Select geographical locations for sensor nodes
New Models		Locations may be chosen from a list, or freely
Parallel MetaH	Objectives:	Nodes must form a connected network Maximize the coverage
Hybrid MetaH		Minimize the number of transmissions (energy)
Multiobjective	Models:	Node \rightarrow (Rsens,Rcomm)
📫 Telecoms.		0 (÷. неси)
Bioinformatics		Network →
Software		
Others		1800 8 00 100 100 100 100 100 Terres partit Solution
		24/05/2011

23 of 44			
		Vireless Sei	nsor Networks: Results
Index	U	U	s in binary coded instances
New Models	SA	gets the best results in	n real coded instances
Parallel MetaH	Networks: Ne	twork layouts obtaine Rcoмм 20	ed for different sensor nodes Rсомм 40
Hybrid MetaH		(1.000)	122 200
Multiobjective	Rsens 20		
📫 Telecoms.			100 m
Bioinformatics			
Software	Rsens 40	San State	
Others			
		24/05/2011	

VANETS (I): Vehicular Ad-hoc Networks

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software

Others

VANETS (II): Vehicular Ad-hoc Networks

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software

Others

Bioinformatics: Fragment Asembly Problem (I)

Index

New Models

Parallel MetaH

Hybrid MetaH

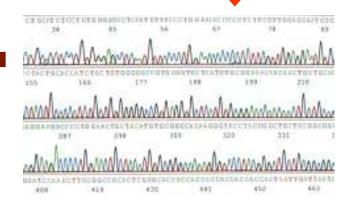
Multiobjective

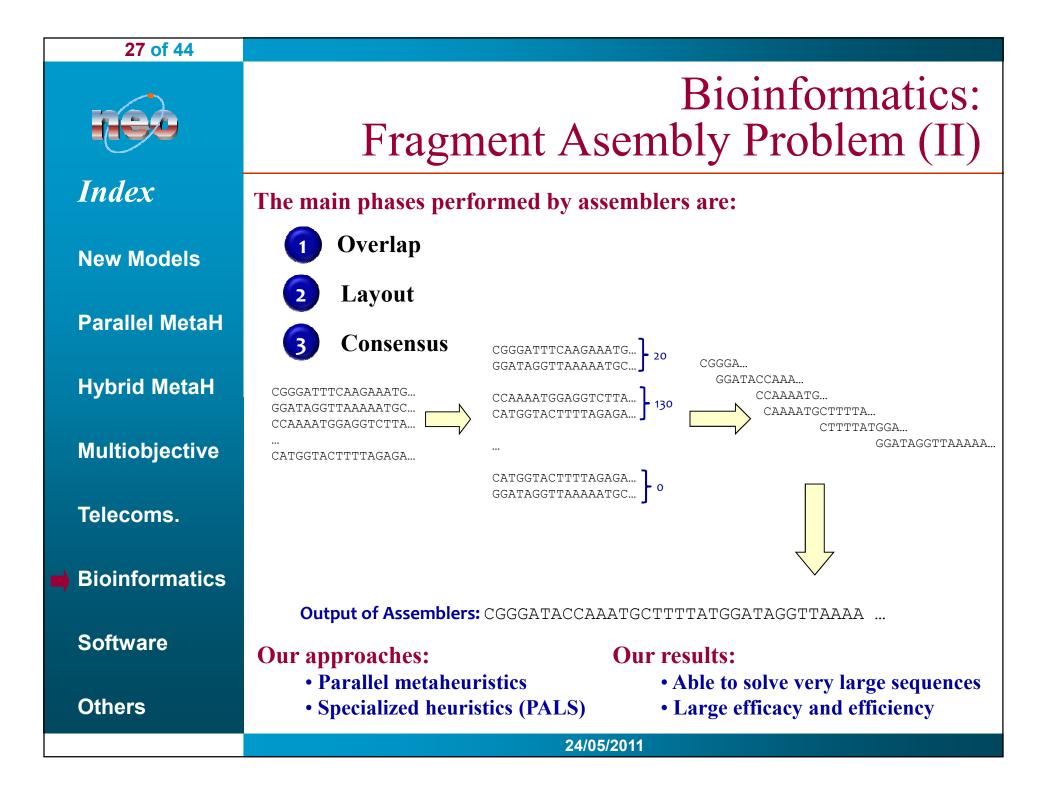
Telecoms.

Bioinformatics

Software

Others





Input to the assembler:

CGGGATTTCAAGAAATG... GGATAGGTTAAAAATGC... CCAAAATGGAGGTCTTA...

CATGGTACTTTTAGAGA...

28 of 44 **Bioinformatics**: Gene Selection (I) Index **Problem:** Gene selection and cancer classification of DNA **Microarray, Feature selection definition: New Models** $F' = argmax_{G \subset \Gamma} \{\Theta(G)\}$ **Parallel MetaH Objectives: Maximize accuracy of prediction** Minimize the number of selected genes Hybrid MetaH **Maximize ROC factors (sensibility and specificity) Multiobjective Phases:** Feature selection, training, validation, fitness calculation Telecoms. Subset Evaluation Solution (S). Provided by Metaheuristic (PSO, GA) SVM - Classification **Bioinformatics** Flage 10-Fold Cross Trainie Validation Microarray Subset Software **Initial Dataset** 1011...001 Fitness(S)=Accuracy & Subset Size

Others

24/05/2011

Test set

29 of 44		
		Bioinformatics: Gene Selection (II)
Index	Fitness:	Monobjective: aggregative
New Models		(<i>alpha*100/accuracy</i> + <i>beta * #features</i>) Multiobjective:
Parallel MetaH		 2 objs (accuracy, #features) 3 objs (sensibility, specificity, #features)
Hybrid MetaH	Classification:	2 Classifiers:
Multiobjective		 Support Vector Machines K-Nearest Neighbors
Telecoms.	Validation:	Input Space Feature Space
Bioinformatics		 Leave One Out CV 10-fold CV
Software	Algorithms:	Metaheuristics
Others		 Binary Geometric PSO for feature selection GA with SSOCF crossover for feature selection
		24/05/2011

30 of 44											
	Bioinformatics: Gene Selection (III)										
Index	Instances: Available large scale datasets of well-known cancer										
New Models		DNA Microarrays: Leukemia AML-ALL, Colon, Prostate, Lung, Ovarian, Breast (e.g. breast 24481									
Parallel MetaH			gene	s and 78	s patien	it sam	pies)				
Hybrid MetaH	Results:			-	U			•	the lite		
	Dataset	PSO	GA	Huerta et al.	Juliusdot ir et al.	tDeb et al.	Guyon et al.	Yu et al.	Liu et al.	Shen et al.	
Multiobjective	Leukemia	99.33(3)	99.79(4)	100(25)	-	100(4)	100(2)	87.44(4)	-	_	
	Breast	90.64(4)	89.02(4)		-	-	-	79.38(67)	-	-	
Telecoms.	Colon	100(3)		99.41(10)	94.12(37)) 97(7)	98(4)	93.55(4)	85.48(-)	94(4)	
Telecoms.	Lung	100(4)	97.38(3)	-	-	-	-	98.34(6)	-	-	
	Ovarian	100(4)	100(3)	-	-	-	-	-	99.21(75)	-	
Bioinformatics	Prostate	100(4)	100(4)	-	88.88(20)) -	-	-	-	-	
· ·											
Software	Leukemia Gene Subsets By PSOsvm: K01383 at, U03056 at, J04130 s at										
	U03056 at, J04130 s at • By GAsvm: L40379 at, S85963 at, U83192 at, Z49099 at										
Others				• By G	Asvm: L4	40379 at,					

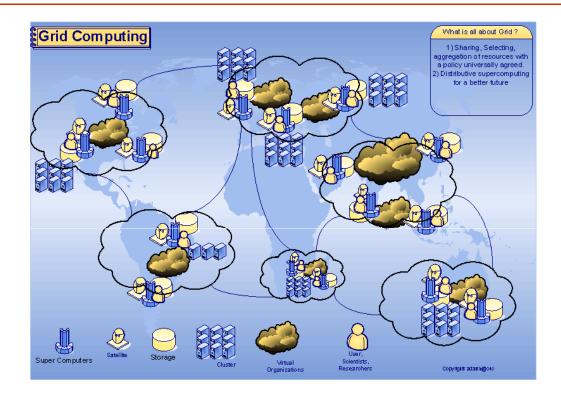
Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective


Telecoms.

Bioinformatics

Software

Others

Bioinformatics and Grid Computing

At present: In progress: Next step: using a stable grid with 300 computers at UMA stable grid of 600 computers at UMA connect to global grids in Europe

Index

Finding Safety Property Violations in Concurrent Systems (I)

- **Objective:** find a counterexample for a safety property in a concurrent model

 $f = \Box p$

- Safety properties are those expressed by an LTL formula of the form:

Parallel MetaH

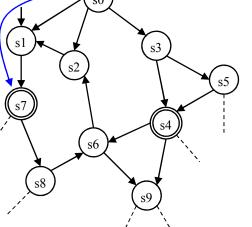
New Models

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics


Software

Others

where *p* is a past formula (with only past operators)
Finding one counterexample = finding one accepting state in the

intersection Büchi automaton (graph exploration problem)

Intersection automaton

Finding Safety Property Violations in Concurrent Systems (II)

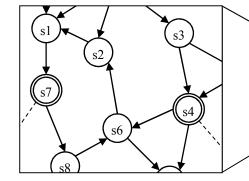
Index

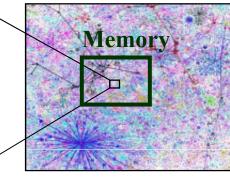
New Models

Parallel MetaH

Hybrid MetaH

Multiobjective


Telecoms.


Bioinformatics

Software

Others

- Number of states very large even for small models

- For example: Dijkstra Dining Philosophers

- *n* philosophers \rightarrow 3^{*n*} states
- 20 philosophers → 1039 GB for storing the states

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

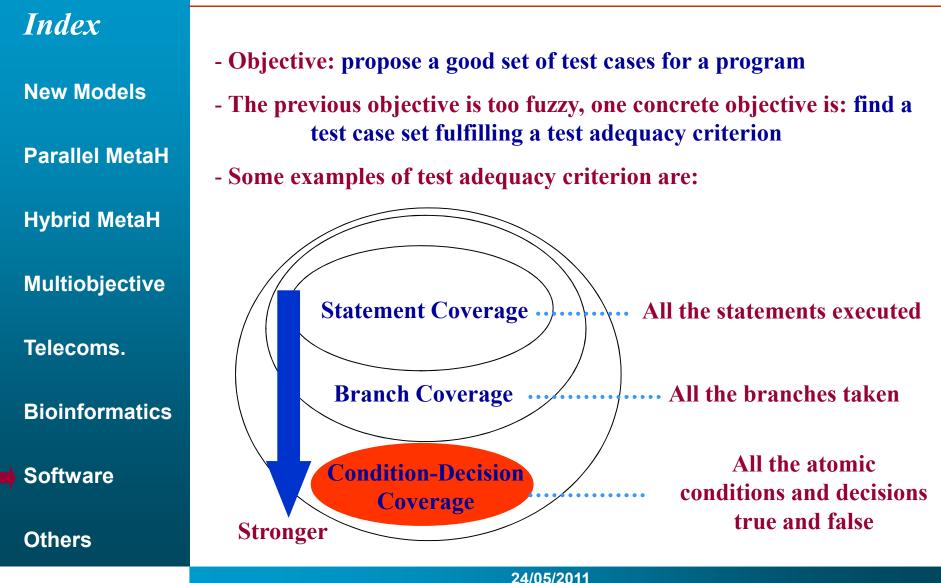
Bioinformatics

Software

Others

Finding Safety Property Violations in Concurrent Systems (III)

- ACOhg is a new Ant Colony Optimization model that can be applied to optimization problems with an unknown and/or very large construction graph


Who can really find errors?

Models	BFS	DFS	A*	BF	ACOhg
giop22					*
needham			•		97 °
phi16			•		*
pots			•		*
marriers4					* *
marriers20					97 3

- ACOhg is a very robust algorithm for this problem and it outperforms traditional algorithm from the model checking domain

Software Testing (I)

Software Testing (II)

Index

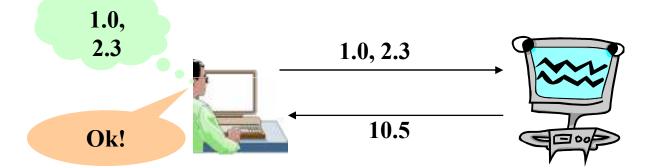
New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.


Bioinformatics

Software

Others

• After codification, software products require a test phase

- The objective is to find errors and to ensure software correctness
- Software companies dedicate 50% of resources to this task

• We propose an automatic tool to generate the input data for the test

37 of 44 Software Testing (III) Index - The global objective is broken down in small partial objectives Six partial objectives Block1 **New Models** condition-decision coverage **Parallel MetaH** c1 true c1 false False True CL c2 true c2 false Hybrid MetaH c3 true c3 false Block3 False True c3 **Multiobjective Function minimization problem** Block2 True False Telecoms. Current input data **Bioinformatics** Fitness Software **Partial objective (c3 true) Others Input data** 24/05/2011

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Bioinformatics

Telecoms.

Index

Software Testing (IV)

- Some results with PSO, ES, and GA (corrected condition coverage)

Drograma	PSO		E	S	GA		
Programs	Cov.	Evals.	Cov.	Evals.	Cov.	Evals.	
triangle	93.98	11295.77	99.84	2370.03	99.67	3209.47	
calday	100.00	179.33	98.18	3166.47	90.91	75.03	
select	88.89	380.13	83.33	13.27	83.33	83.20	
bessel	97.56	116.90	97.56	350.63	97.56	533.03	
sa	100.00	165.67	99.94	2337.30	96.72	176.63	
netflow	97.77	4681.70	98.17	307.77	96.42	917.90	

- PSO and ES have similar efficacy

- The coverage obtained by GA is always reached or outperformed by PSO or ES in all the cases

24/05/2011

Others

Software

Others: Strip Packing (I)

Index	• N rectangular pieces p _i with a height h _i and a width w _i and a rectangular container (the strip) with width W and unbounded height.								
New Models	 Objective: To allocate all the pieces into the strip without overlaping, without rotating, with their edges parallel to the edges of the strip 	n.							
Parallel MetaH	 With their edges parameter to the edges of the strip, Bottom-up, minimizing the height of the used strip. (Eq: To find a packing pattern that fulfils all these requirements) 								
Hybrid MetaH	 Restriction: three-stage guillotine patterns. Scientific interest: NP-hard problem. Applications: Paper, cloth, wood, and glass industries. 								
Multiobjective		Unused							
Telecoms.	Representation	space							
Bioinformatics	Chromosomes: sequences (permutations) of pieces which define the input for a layout algorithm.	Level 2 6 Waste							
Software	Layout algorithm: a next fit heuristic that generates three-stage guillotine patterns.	Level 1 2 4 5							
Others	Fitness function: $F(\pi) = strip.length - \frac{l.waste}{l.area}$	Stack 1 Stack 2 Stack 3 of level 1 of level 1 of level 1							
	24/05/2011								

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Index

Others: Strip Packing (II)

Evolution Step

Best Inherited Level Recombination: Transmits the levels with the highest filling rate from one parent to the child.

Mutation: Best and Worst Stripe Exchange (BW_SE). Pieces of the best level are allocated in the first positions while the pieces of the worst level are asigned to the last positions.

Adjustment Operator: Applies a First Fit heuristic and the obtained layout is codified in a chromosome.

Initial Seeding

#	Rule Description	#	Rule Description					
1	sorts pieces by decreasing width.	2	sorts pieces by increasing width.					
	sorts pieces by decreasing length.	4	sorts pieces by increasing length.					
5	sorts pieces by decreasing area.	6	sorts pieces by increasing area.					
#	Rul	eΙ	Description					
7	sorts pieces by alternating betwee	en o	lecreasing width and height.					
8	sorts pieces by alternating betwee	en o	decreasing width and increasing height.					
	sorts pieces by alternating betwee							
10	sorts pieces by alternating betwee	en i	ncreasing width and decreasing height.					
11	the pieces are reorganized following	ng '	the BFDH heuristic.					
12	the pieces are reorganized following the FFDH heuristic.							
13	The packing pattern remains without modifications, so here the rule preserves							
	the original piece position (random generation).							

24/05/2011

 parent
 0
 10
 7
 9
 3
 18
 16
 12
 19
 14
 1
 5
 2
 4
 6
 13
 17
 11
 5
 8

 filing role
 0.8
 0.73
 0.73
 0.78
 0.78

 Child
 6
 10
 7
 4
 3
 18
 16
 12
 6
 8
 4
 5
 15
 1
 17
 13
 11
 2
 19
 14

 parents
 0
 0
 8
 4
 5
 15
 1
 17
 13
 11
 2
 19
 14

 b
 b
 b
 b
 c
 a

 11
 a
 a
 a
 a
 a

 a
 a
 a
 a
 a
 a
 a

 <th colspa

Telecoms.

Bioinformatics

Software

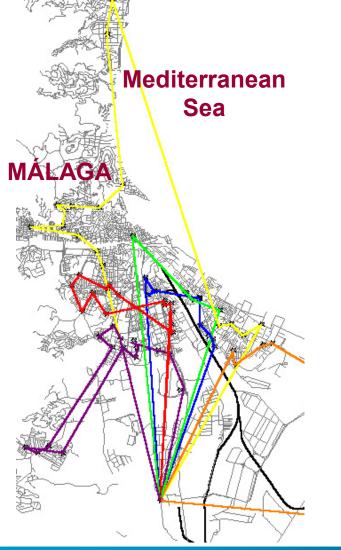
Others

Index

New Models

Parallel MetaH

Hybrid MetaH


Multiobjective

Telecoms.

Bioinformatics

Software

Others

Others: Logistics

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software

Others

Others: Dynamic Problems

Optimal location of aerogenerators

Wind farm design

Aerogenerator design

43 of 44			
		Others: Dynan	nic Problems
Index		DYNAMIC OPTIMIZA	TION
New Models			
Parallel MetaH	Traffic Light Controllers	Elevator	Gas Engine Control
Hybrid MetaH		Systems	
Multiobjective			
Telecoms.			
Bioinformatics			
Software			
Others			

Index

New Models

Parallel MetaH

Hybrid MetaH

Multiobjective

Telecoms.

Bioinformatics

Software

Others

End of Presentation

Málaga http://neo.lcc.uma.es

