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Motivations & Contributions- ST

e Structuring the population leads to better performance in EAs
-  Distributed, Cellular, Random, Small-world, Scale-free, ...

* Good previous results for small-world topologies
-  Combinatorial optimization [Giacobini06]
-  Continuous optimization [Dorronsorol 1]
- Multi-objective optimization [Kirley06/07]
- Population dynamics [Giacobini05] [Payne06/09]

*  We propose and analyze eight different ways to generate small-
world topologies for genetic algorithms

-  Rewiring/adding edges
- Different probabilities
-  Compared versus other well-known population topologies
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Small-world GAs (SWGAs) 8 SI1

e Small world networksl Short charasteristic path lengh (L)

High clusterintg coefficient (Y)
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* Topology generation:VVatts and Strogatz algorithm

|. Create ring topology (every individual has K neighbors)
2. For every edge
3. Rewire to random destination individual with probability
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Small-world GAs (SWGAs) 8 SI1

('Watts and Strogatz algorithm R

|. Create ring topology (every individual has K neighbors)
2. For every edge

3. Rewire to random destination individual with probability B,

 Small-world topologies studied

- K=4
- B =0.0502051.0
-  Edges:

»  Rewiring

»  Adding
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Selection Pressure SIT
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Problems

Error Correcting Code Desgin (ECC)

< (d-1)/2 bits

Number of / Minimum .

words Hamming distance .

e
= C=n,M,d)
' Lentgh of words
“ Find C making d maximum

% Combinatorial optimization Two codewords Colev o
differ by at least

d bits

Maximum Cut of a Graph (MAXCUT)

10 vertices graph maximum cut
1

6

® Objective: Splitting a graph
maximizing the sum of the |
weights of the edges
connecting the two subgraphs s
=" Combinatorial optimization
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Problems N

Massively Multimodal Deceptive Problem (MMDP)
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Multimodal Problem Generator (P-PEAKS)

\ “ Problem Generator
—7 .
Z “ Find one of the P-Peaks
“ Tunable degree of

multimodality
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Frequency Modulation of Sounds (FMS)
/\/V\/\/W\/ = Fit two waves by adjusting
six (double) parameters

? @ Epistatic, continuous

/\/\/\/\/ optimization

Minimum Tardy Task Problem (MTTP)

Non Scheduled Tasks

&
l.: Execution time [ —] Scheduled Tasks
Wl Welght . 1 g " 1 1 = >
ime

® Goal: Task scheduling with maximum weight and
no deadline violations
“ Constrained combinatorial optimization
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Problems

3SAT

D(X1,%X2,X3,X4) = (X1VX2VX3) A (XIVIX2VTIX4) A
(XI1VX3VTX4) A (X1 VX2VTIX4) A (X VX2V TIX3)

& (Goal: Find values for the

boolean variables to make
the formula TRUE
& 15t NP-complete problem
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SIT

Hit Rate (%)

100 -

90 -

80 -

20 - “ ssGA
60 - “genGA
50 -

10 - ~ dGA
30 - “ cGA
20 -

o - ~ SWGA

0 -~ SWGA-R

Thursday, June 2, 2011




Average Evaluations
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Conclusions & Future Work ST

e SW topologies were used in the past with promising results

* We studied different ways to generate SVV topologies
- Adding or rewiring edges
- With different probabilities

( Best configuration: Adding edges with probability 0.2 )

e Competitive results with respect to the compared algorithms
(both panmictic and decentralized)
- Accuracy
-  Effectiveness

 Future work: Extend to other topologies (different initial regular
matrices) and bigger benchmarks (combinatorial and continuous
domains) 14
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Thank you.
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