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Motivations & Contributions
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• Structuring the population leads to better performance in EAs
- Distributed, Cellular, Random, Small-world, Scale-free, ...

• Good previous results for small-world topologies
- Combinatorial optimization [Giacobini06]

- Continuous optimization [Dorronsoro11] 

- Multi-objective optimization [Kirley06/07]

- Population dynamics [Giacobini05] [Payne06/09]

• We propose and analyze eight different ways to generate small-
world topologies for genetic algorithms
- Rewiring/adding edges
- Different probabilities
- Compared versus other well-known population topologies
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EAs with Decentralized Populations
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Panmictic GAs

Genetic 
Algorithms

Centralized Island Cellular

Structured GAs
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Regular Network Small World Network Random Network

High L
High γ

Low L
Low γ

• Small world networks

• Topology generation: Watts and Strogatz algorithm

Small-world GAs (SWGAs)
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Short charasteristic path lengh (L)
High clusterintg coefficient (γ)

1. Create ring topology (every individual has K neighbors)
2. For every edge
3.    Rewire to random destination individual with probability β
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Small-world GAs (SWGAs)

• Small-world topologies studied
- K = 4

- β = 0.05, 0.2, 0.5, 1.0
- Edges:

‣ Rewiring

‣ Adding

5

Watts and Strogatz algorithm
1. Create ring topology (every individual has K neighbors)
2. For every edge
3.    Rewire to random destination individual with probability β
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Selection Pressure
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Rewiring Edges
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Adding Edges
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Problems
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Error Correcting Code Desgin (ECC) 

Maximum Cut of a Graph (MAXCUT) 

!  C = (n, M, d) 

!  Find C making d maximum 
!  Combinatorial optimization 
!  NP-hard 

Number of 
words 

Lentgh of words 

Minimum 
Hamming distance 

!  Objective: Splitting a graph      
     maximizing the sum of the  
     weights of the edges  
     connecting the two subgraphs 
!  Combinatorial optimization 
!  NP-hard 

 10 vertices graph  maximum cut 
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Problems
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Massively Multimodal Deceptive Problem (MMDP) 

Multimodal Problem Generator (P-PEAKS) 

! 40 subproblems of 6 bits  
     each one (MMDP40) 
!  Multimodal 
!  Deceptive problem 

!  Problem Generator 
!  Find one of the P-Peaks 
!  Tunable degree of  
     multimodality 

Number of ones
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Problems
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Frequency Modulation of Sounds (FMS) 

Minimum Tardy Task Problem  (MTTP) 

! Fit two waves by adjusting    
     six (double) parameters 
!  Epistatic, continuous  
     optimization 

? 

Non Scheduled Tasks 

Time 

Scheduled Tasks 

! Tasks 

! Goal: Task scheduling with maximum weight and  
    no deadline violations 
! Constrained combinatorial optimization  

li: Execution time 
di: Deadline 
wi: Weight 
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Problems
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Φ(x1,x2,x3,x4) = (x1∨x2∨x3) ∧ (x1∨¬x2∨¬x4) ∧ 
(x1∨x3∨¬x4) ∧ (¬x1∨x2∨¬x4) ∧ (¬x1∨¬x2∨¬x3)

3SAT 

COUNTSAT 
!  Goal: Find values for the  
     boolean variables to make  
     the formula TRUE 
! 1st NP-complete problem 
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Experiments
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Hit Rate (%)
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Average Evaluations
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Conclusions & Future Work
• SW topologies were used in the past with promising results

• We studied different ways to generate SW topologies
- Adding or rewiring edges
- With different probabilities

• Competitive results with respect to the compared algorithms 
(both panmictic and decentralized)
- Accuracy
- Effectiveness 

• Future work: Extend to other topologies (different initial regular 
matrices) and bigger benchmarks (combinatorial and continuous 
domains) 14

Best configuration:  Adding edges with probability 0.2
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Thank you.
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