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Introduction
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• Deal with large scale complex multi-objective 
problems

• Where classical EAs tend to perform poorly
• Use of cooperative coevolutionary techniques to 

simultaneously optimize several subproblems
• Not popular in multi-objective optimization domain
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• Part of De Jong’s five function test suite

• Continuous and unimodal

with -2.12 ≤ xi ≤ 2.12

• Global minimum  
with 

Rosenbrock Function
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• A chromosome encodes a complete solution

• Solution evaluated on the global problem

GA on Rosenbrock (4 variables)
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• Each node runs a subpopulation for a subset of the N variables

• Each population evaluates each of its individuals on the global 
fitness function using the best individual received from each 
other subpopulation

Cooperative Coevolutionary GA (CCGA)

7[Po$er,	  1994]
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Multi-Objective CCGA
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Three New Algorithms

• Three CCMOEAs designed
- Based on NSGA-II: CCNSGAII
- Based on SPEA2:    CCSPEA2
- Based on MOCell:  CCMOCell
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NSGA-II MOCell

• Reference algorithm
• Panmictic population
• Selection of solutions

- Ranking
- Crowding

• Cellular population
- Only next individuals 

can interact
• External archive

- Feedback to 
population 

SPEA2

• Panmictic population
• External archive

- Strength raw fitness
- k-nearest neighbors 



Parallelization

• Adapta&on	  for	  paralleliza&on
- No sequential processing of the sub-populations
- Remaining synchronization points
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Batch Tasks Mapping on Grids

• Based on the Estimated Time 
to Compute (ETC) simulation 
model by Braun et al.*

• An instance of the problem:
- A number of independent tasks to be scheduled
- A number of heterogeneous machines candidates for scheduling
- Ready time readym: when machine m will finish the previously 

assigned tasks
- The ETC matrix (nb_tasks x nb_machines).

ETC[j][m] is the expected execution time of task j in machine m
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*T.D. Braun, H.J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison of 
eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems, Journal of Parallel and 
Distributed Computing 61(6):810-837, 2001
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Multi-objective Robust Mapping on Grids*

• Objectives:
- Minimize makespan
- Maximize robustness

• Finishing time of machine j:
• Robustness radius◆ of machine j:

• Toleration variation: τ = 30%
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in this work), S(j) is the set of tasks assigned to mj ,
and C is a matrix with the actual times to compute the
tasks in every machine (C = ETC when we are not
considering errors in the estimation of the duration of
tasks). Our makespan function is defined as:

fM (!x) = {max{Fj(C)} , (2)

where !x represents an allocation.
• The robustness metric we are using in this work was

originally presented in [11]. It is defined as the min-
imum of the robustness radii of every machine used
in the schedule. The robustness radius for a given
machine mj is the smallest collective increase, based
on the euclidean distance, in the error that would cost
the finishing time of that machine to be τ times than
original, and we calculate it with Eq. (3) taken from [11]
—where Morig is the makespan of the schedule with the
estimated ETC values and Fj(Corig) is the estimated
time to compute the assigned tasks to machine mj .
Our robustness metric is the worst machine in terms of
that value, as defined in Eq. (4). Specifically, by using
this robustness metric, we ensure that if the collective
difference of the actual task execution times versus the
estimated times is within a certain calculated range, then
the given makespan requirement will be met.

r!x(Fj , C) =
τ · Morig − Fj(Corig)√

number of applications allocated to mj
(3)

fR(!x) = {min{r!x(Fj , C)} . (4)

Finally, our multi-objective RSMP problem is defined as
finding schedules such that the makespan fM is minimized
and the robustness fR is maximized —see Eq. (5). Notice
that the two objectives to optimize are in conflict, because
improving the makespan of a solution may lead to a decrease
in its robustness, and vice-versa. Therefore our problem must
be solved with multi-objective optimization techniques.

RSMP (!x) =
{

minimize fM (!x)
maximize fR(!x) . (5)

V. THE ALGORITHMS

We have selected from the literature four multi-objective
algorithms with different features to solve the new proposed
problem. These algorithms are IBEA, MOCell, MOEA/D,
and NSGA-II. They belong to the state of the art in multi-
objective optimization, and therefore they will provide com-
petitive results for our new problem. We would like to
mention at this point that even when NSGA-II is not very
competitive for problems with more than two objectives, it is
still highly competitive (and probably the most referenced)
for two-objectives problems, as is the case considered in this
paper.

The Indicator Based Evolutionary Algorithm, IBEA [34],
is characterized by the way in which the fitness values are
computed. In this algorithm, a binary performance metric
(also called indicator) must be defined by the designer ac-
cording to his/her preferences, and solutions will be evaluated
in terms of their adequacy in terms of this metric. One
important feature of IBEA is that because of the use of such
indicator, there is no need of including any diversification
mechanism during the optimization process.

The Multi-Objective Cellular genetic algorithm, MO-
Cell [35], is characterized by the use of an external archive,
in which the non-dominated solutions found during the
search are stored, and the use of a decentralized population.
Specifically, individuals are arranged in a two dimensional
toroidal grid, and only those individuals that are close to
each other in the mesh are allowed to interact. The main
advantage of using this population structure, called cellular,
is that individuals are isolated by distance, and therefore
good solutions will spread slowly through the population
mesh, consequently keeping the diversity of solutions for
longer [36]. MOCell takes advantage of the good solutions
stored in the archive of non-dominated solutions by choosing
one of these solutions as one of the parents during the
breeding loop.

MOEA/D [37] tackles the MOP by optimizing a number
of single-objective optimization problems (called subprob-
lems) that are composed by aggregations of the different
functions composing the MOP (the authors propose different
aggregation techniques; from them, we use the Tchebycheff
approach). Therefore, the different aggregated functions are
approximating towards different regions of the Pareto front.
A neighborhood relation is established among subproblems,
and they are optimized by using information mainly from its
neighboring subproblems.

The Non-dominated Sorting Genetic Algorithm, NSGA-
II [38], is, perhaps, the most referenced algorithm in the
multi-objective literature. It is a GA with a panmictic pop-
ulation. At each generation, an auxiliary population (with
the same size as the original one) is generated by iteratively
applying the genetic operators, then, both the current and
the auxiliary populations are merged into one single new
population of the same size for the next generation. The
Ranking (an ordering of solutions from better to worse in
terms of how many other solutions they dominate) and
Crowding (assigning higher fitness to those solutions that are
more isolated in the current Pareto front) processes are used
to select the solutions for the next generation population.

VI. EXPERIMENTS

We summarize and analyze in this section the experiments
that were carried out for this work. Section VI-A presents the
two problem classes we have considered. The configuration
of the algorithms is then described in Section VI-B, and the
metrics used to evaluate them are defined in Section VI-C.
Finally, Section VI-D provides our main results, an analysis
of them, and a comparison of the behavior of the different
studied algorithms.
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Section III. After that, we describe in Section IV both the
classical problem of static mapping of independent tasks and
the new multi-objective definition we propose. We present
the studied algorithms in Section V, and then we detail our
experiments and analyze their results in Section VI. Finally,
we conclude this paper in Section VII.

II. RELATED WORK

As a first approach to robust scheduling, several works
appeared in the literature proposing scheduling algorithms
to find solutions that are somehow flexible to possible un-
certainties due to breakdowns or some other kind of failures
that may occur [15], [16], [17], [18], [19], [20], [21]. In
this context, a flexible solution means that it is expected
to be affected by these uncertainties (e.g., by some delay)
to a lesser extent than a regular scheduler. However, these
algorithms cannot offer any guarantee on the correct behavior
of the scheduled solution after these uncertainties occur. In
this case, a good robustness value means that the solution
is highly flexible to the considered uncertainty in the sense
that the variation in the makespan will be smaller than in the
case of regular schedulers.

Other works focus on the optimization of the problem
considering the worst case for the uncertain values. Thus
obtaining the maximum possible robustness for the solu-
tions [22], [23], but a low quality makespan.

Finally, Ali et al. proposed in [11] a general mathematical
formulation of a robustness metric that can be applied to
a variety of parallel and distributed systems. The authors
apply this metric to two example systems, one of them
being the static allocation of independent tasks to heteroge-
neous resources that we are considering in this paper. When
adopting this robustness metric, it is guaranteed that if the
collective difference of the actual task execution times versus
the estimated times is within a certain calculated range, then
the given makespan requirement will be met. This metric is
used in [24] and [25], and we employ the metric in this paper
in Section IV.

Regarding the existing multi-objective approaches for
scheduling problems, there are a few works in the literature
that consider a single fitness function defined as the weighted
sum of the objectives to optimize, for instance makespan
and flowtime [8], [26], [27]. Additionally, there exist sev-
eral works using multi-objective optimization algorithms for
the problem of mapping tasks on Grids, either considering
dependencies between tasks [28], [29], deadlines [30], or
static allocation of independent tasks [31], [32], [33], as
the problem considered in this paper. However, these papers
are considering objectives such as the resource utilization,
the completion time of the resources, or the total execution
time, but none is considering the robustness of the system
as we do in this work. Perhaps, the only exception is [33],
which is considering some kind of robustness by optimizing,
together with the resource utilization, the resources reliability
by assigning some static reliability values to every resource
(i.e., a value meaning how reliable is the resource) in the
problem definition.

III. MULTI-OBJECTIVE OPTIMIZATION FUNDAMENTALS

To make this paper self-contained, we present some basic
notions of multi-objective optimization in this section [13],
[14]. Specifically, the concepts of multi-objective problem
(MOP), dominance, Pareto optimal set, and Pareto front are
addressed. We are assuming here, without loss of generality,
the minimization of all the objectives.

A general multi-objective optimization problem (MOP) is
to find vectors !x∗ = [x∗

1, x
∗
2, . . . , x

∗
n] that are optimizing the

vector of functions !f (!x) = [f1(!x), f2(!x), . . . , fk(!x)]. Each
fi(!x) is a single-objective optimization problem, and it is
one of the objectives to optimize in our MOP. The different
objectives must be in conflict with the other ones, meaning
that an increase in the quality of one of them will lead
to worsen the values of (some of) the other ones. If the
objectives were not in conflict, then we could reformulate
the problem as a single-objective one.

In multi-objective optimization, it is not trivial to decide
whether one solution is better than another one or not,
because it could be better for several objectives, but worse for
some other ones. Therefore, we say that a solution dominates
another one if it is better for every objective. Two solutions
are said to be non-dominated if neither dominates the other.

The goal of multi-objective optimization is to find the
optimal set of non-dominated solutions to the problem,
called the Pareto optimal set. Finally, the projection of the
Pareto optimal set in the objectives domain is called the
Pareto optimal front (i.e., the !f (!x) values for every !x in
the Pareto optimal set). Because the Pareto optimal front
might contain a large number of solutions, a good multi-
objective algorithm must look for a Pareto front with a
limited number of solutions, and it should be as close as
possible to the optimal front. Additionally, these solutions
should be uniformly spread along the Pareto front; otherwise,
they would not be very useful to the decision maker.

IV. MULTI-OBJECTIVE ROBUST MAPPING ON GRIDS

We present in this section the new multi-objective problem
of robust static mapping of independent tasks on Grids
(which we call RSMP, standing for Robust Static Mapping
Problem). Consider a set of n independent tasks T =
{t1, t2, . . . , tn} that must be scheduled onto the set of k
heterogeneous machines M = {m1, m2, . . . , mk}. We as-
sume that an estimate of the time to compute task ti in every
machine mj , ETCi,j , is known. Then, the RSMP problem is
to allocate all of the tasks on the different machines in a way
that the makespan of the schedule is minimized, while at the
same time its robustness is maximized. These two objectives
are defined bellow.

• Makespan is defined as the maximum completion time
of all the resources used in the schedule. The completion
time of a machine mj in schedule S is defined as:

Fj(C) = readyj +
∑

t∈S(j)

Ct,j , (1)

where readyj is the time when machine mj will be
available (we consider readyj = 0 for every machine
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(3)
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Finally, our multi-objective RSMP problem is defined as
finding schedules such that the makespan fM is minimized
and the robustness fR is maximized —see Eq. (5). Notice
that the two objectives to optimize are in conflict, because
improving the makespan of a solution may lead to a decrease
in its robustness, and vice-versa. Therefore our problem must
be solved with multi-objective optimization techniques.
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algorithms with different features to solve the new proposed
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and NSGA-II. They belong to the state of the art in multi-
objective optimization, and therefore they will provide com-
petitive results for our new problem. We would like to
mention at this point that even when NSGA-II is not very
competitive for problems with more than two objectives, it is
still highly competitive (and probably the most referenced)
for two-objectives problems, as is the case considered in this
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The Indicator Based Evolutionary Algorithm, IBEA [34],
is characterized by the way in which the fitness values are
computed. In this algorithm, a binary performance metric
(also called indicator) must be defined by the designer ac-
cording to his/her preferences, and solutions will be evaluated
in terms of their adequacy in terms of this metric. One
important feature of IBEA is that because of the use of such
indicator, there is no need of including any diversification
mechanism during the optimization process.

The Multi-Objective Cellular genetic algorithm, MO-
Cell [35], is characterized by the use of an external archive,
in which the non-dominated solutions found during the
search are stored, and the use of a decentralized population.
Specifically, individuals are arranged in a two dimensional
toroidal grid, and only those individuals that are close to
each other in the mesh are allowed to interact. The main
advantage of using this population structure, called cellular,
is that individuals are isolated by distance, and therefore
good solutions will spread slowly through the population
mesh, consequently keeping the diversity of solutions for
longer [36]. MOCell takes advantage of the good solutions
stored in the archive of non-dominated solutions by choosing
one of these solutions as one of the parents during the
breeding loop.

MOEA/D [37] tackles the MOP by optimizing a number
of single-objective optimization problems (called subprob-
lems) that are composed by aggregations of the different
functions composing the MOP (the authors propose different
aggregation techniques; from them, we use the Tchebycheff
approach). Therefore, the different aggregated functions are
approximating towards different regions of the Pareto front.
A neighborhood relation is established among subproblems,
and they are optimized by using information mainly from its
neighboring subproblems.

The Non-dominated Sorting Genetic Algorithm, NSGA-
II [38], is, perhaps, the most referenced algorithm in the
multi-objective literature. It is a GA with a panmictic pop-
ulation. At each generation, an auxiliary population (with
the same size as the original one) is generated by iteratively
applying the genetic operators, then, both the current and
the auxiliary populations are merged into one single new
population of the same size for the next generation. The
Ranking (an ordering of solutions from better to worse in
terms of how many other solutions they dominate) and
Crowding (assigning higher fitness to those solutions that are
more isolated in the current Pareto front) processes are used
to select the solutions for the next generation population.

VI. EXPERIMENTS

We summarize and analyze in this section the experiments
that were carried out for this work. Section VI-A presents the
two problem classes we have considered. The configuration
of the algorithms is then described in Section VI-B, and the
metrics used to evaluate them are defined in Section VI-C.
Finally, Section VI-D provides our main results, an analysis
of them, and a comparison of the behavior of the different
studied algorithms.
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*B. Dorronsoro, P. Bouvry, J.A. Cañero, A.A. Maciejewski, H.J. Siegel, Multi-objective Robust Static Mapping of Independent Tasks 
on Grids, IEEE Congress on Evolutionary Computation (CEC), pp. 3389-3396, 2010.
◆S. Ali, A.A. Maciejewski, H.J. Siegel, and J.-K. Kim, Measuring the Robustness of a Resource Allocation, IEEE Trans. on Parallel 
and Distributed Systems 15(7), 2004.

x : An allocation 
C: matrix with the actual times to compute the tasks on every machine
Morig: Makespan of x according to ETC 
S(j): Set of tasks assigned to machine j



Parameters Configuration

• Individual representation

• Two points recombination (pR = 0.9)

• Rebalance mutation (pM = 0.2)
- Move one task from one of the 25% machines with longest 

completion time to one of the 25% machines with shortest 
completion time
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• Individual representation

• Two population initialization techniques are compared
– Partially Random Solution (PRS): Every individual is generated as follows:

• Randomly: 25% of every individual
– Random tasks every time
– The same task cannot be chosen twice in this random process

• Min-Min: the other 75%
– Seed: One individual generated 100% with Min-Min, and the others 100% 

randomly generated

Parameters Configuration

Task 1

Machine i

Task 2

Machine j

Task 512

Machine k
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Problem Instances
• Two sizes:

• Inconsistent: 
- The fact that machine j is faster than k for task t does not imply that 
j is faster than k for any task

• Two problem classes studied
- High task and resource heterogeneity
- Low task and resource heterogeneity

• We study 10 different instances per problem class
- Each instance has a different ETC 16

Small

★ Tasks: 512
★ Processors: 16

Large

★ Tasks: 2048
★ Processors: 64



Performance Evaluation
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• Three performance metrics

• The optimal Pareto front is not known
- Reference Pareto front built by merging all the Pareto fronts 

obtained

Accuracy

F1

F2

Hypervolume; Inverted Generational Distance
Diversity

F1

F2
Spread



Example of Reference Pareto Front
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High task and resource heterogeneity
Low task and resource heterogeneity



Speedup Results
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Algorithms Comparison: IGD
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Outline

• Introduction
• Coevolutionary Genetic Algorithms
• Multi-Objective Coevolutionary Framework
• Application on the RSMP
• Conclusion & Perspectives
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Conclusion & Perspectives

• Conclusion
- Design of generic framework for Cooperative Coevolutionary 

Multi-objective Evolutionary Algorithms (CCMOEAs)
‣ Accurate 

‣ Efficient

- Implementation of three new CCMOEAs
‣ Based on NSGA-II, SPEA2, and MOCell

- Validate on a real-world problem
‣ Robust Static Mapping of Independent Tasks on Grids (RSMP)

• Perspectives
- Asynchronous communications between the subpopulations. 
- Tackle bigger instances of the RSMP problem
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Thank you for your attention


