

Multi-objective Cooperative Coevolutionary **Algorithms for Robust Scheduling**

Grégoire Danoy, Bernabé Dorronsoro, **Pascal Bouvry**

University of Luxembourg

EVOLVE 2011 26/05/0211

CSC Computer Science

- Introduction
- Coevolutionary Genetic Algorithms
- Multi-Objective Coevolutionary Framework
- Application on the RSMP
- Conclusion & Perspectives

Introduction

- Deal with large scale complex multi-objective problems
- Where classical EAs tend to perform poorly
- Use of cooperative coevolutionary techniques to simultaneously optimize several subproblems
- Not popular in multi-objective optimization domain

- Introduction
- Coevolutionary Genetic Algorithms
- Multi-Objective Coevolutionary Framework
- Application on the RSMP
- Conclusion & Perspectives

Rosenbrock Function

- Part of De Jong's five function test suite
- Continuous and unimodal

n ,

$$f(x) = \sum_{i=1}^{1} \left(100 \left(x_i^2 - x_{i+1} \right)^2 + \left(1 - x_i \right)^2 \right)$$

with -2.12 $\leq x_i \leq 2.12$

• Global minimum $f(x^*) = 0$ with $x^* = (1,1,...1)$

•

GA on Rosenbrock (4 variables)

- A chromosome encodes a complete solution
- Solution evaluated on the global problem

Cooperative Coevolutionary GA (CCGA)

- Each node runs a subpopulation for a subset of the N variables
- Each population evaluates each of its individuals on the global fitness function using the best individual received from each other subpopulation

- Introduction
- Coevolutionary Genetic Algorithms
- Multi-Objective Coevolutionary Framework
- Application on the RSMP
- Conclusion & Perspectives

Multi-Objective CCGA

Generate final archive of non-dominated solutions

Three New Algorithms

- Three CCMOEAs designed
 - Based on NSGA-II: CCNSGAII
 - Based on SPEA2: CCSPEA2
 - Based on MOCell: CCMOCell

NSGA-II

- Reference algorithm
- Panmictic population
- Selection of solutions
 - Ranking
 - Crowding

SPEA2

- Panmictic population
- External archive
 - Strength raw fitness
 - k-nearest neighbors

MOCell

- Cellular population
 - Only next individuals can interact
- External archive
 - Feedback to population

Parallelization

- Adaptation for parallelization
 - No sequential processing of the sub-populations
 - Remaining synchronization points

- Introduction
- Coevolutionary Genetic Algorithms
- Multi-Objective Coevolutionary Framework
- Application on the RSMP
- Conclusion & Perspectives

Batch Tasks Mapping on Grids

Based on the Estimated Time to Compute (ETC) simulation model by Braun et al.*

- An instance of the problem:
 - A number of independent tasks to be scheduled
 - A number of heterogeneous machines candidates for scheduling
 - Ready time $ready_m$: when machine *m* will finish the previously assigned tasks
 - The ETC matrix (nb_tasks x nb_machines). -ETC[j][m] is the expected execution time of task j in machine m

*T.D. Braun, H.J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems, Journal of Parallel and Distributed Computing 61(6):810-837, 2001

Multi-objective Robust Mapping on Grids

- Objectives:
 - Minimize makespan $f_M(\vec{x}) = \{\max\{F_j(C)\}\}$
 - Maximize robustness $f_R(\vec{x}) = \{\min\{r_{\vec{x}}(F_j, C)\}$
- Finishing time of machine *j*: $F_j(C) = ready_j + \sum_{i=1}^{n} C_{t,j}$
- Robustness radius[•] of machine *j*:

$$r_{\vec{x}}(F_j, C) = \frac{\tau \cdot M^{orig} - F_j(ETC)}{\sqrt{\text{number of applications allocated to } m_j}}$$

• Toleration variation: $\tau = 30\%$

 \vec{x} : An allocation

C: matrix with the actual times to compute the tasks on every machine M^{orig} : Makespan of \vec{x} according to ETC

 $t \in S(j)$

S(*j*): Set of tasks assigned to machine *j*

^{*}B. Dorronsoro, P. Bouvry, J.A. Cañero, A.A. Maciejewski, H.J. Siegel, Multi-objective Robust Static Mapping of Independent Tasks on Grids, IEEE Congress on Evolutionary Computation (CEC), pp. 3389-3396, 2010.

[•]S. Ali, A.A. Maciejewski, H.J. Siegel, and J.-K. Kim, Measuring the Robustness of a Resource Allocation, IEEE Trans. on Parallel and Distributed Systems 15(7), 2004.

Parameters Conclusions & Conclusions & Further Work

• Individual representation

• Two points recombination (p_R = 0.9)

- Rebalance mutation (p_M = 0.2)
 - Move one task from one of the 25% machines with longest completion time to one of the 25% machines with shortest completion time

Problem Instances

• Two sizes:

- Inconsistent:
 - The fact that machine *j* is faster than *k* for task *t* does not imply that *j* is faster than *k* for any task
- Two problem classes studied
 - High task and resource heterogeneity
 - Low task and resource heterogeneity
- We study 10 different instances per problem class
 - Each instance has a different ETC

Performance Evaluation

• Three performance metrics

- The optimal Pareto front is not known
 - Reference Pareto front built by merging all the Pareto fronts obtained

Example of Reference Pareto Front

UNIVERSITÉ DU LUXEMBOURG

Speedup Results

 $Speedup = \frac{Time_{MOEA}}{Time_{CCMOEA}}$

Algorithms Comparison: IGD

20

Algorithms Comparison: IGD

21

- Introduction
- Coevolutionary Genetic Algorithms
- Multi-Objective Coevolutionary Framework
- Application on the RSMP
- Conclusion & Perspectives

Conclusion & Perspectives

- Conclusion
 - Design of generic framework for Cooperative Coevolutionary Multi-objective Evolutionary Algorithms (CCMOEAs)
 - Accurate
 - Efficient
 - Implementation of three new CCMOEAs
 - Based on NSGA-II, SPEA2, and MOCell
 - Validate on a real-world problem
 - Robust Static Mapping of Independent Tasks on Grids (RSMP)
- Perspectives
 - Asynchronous communications between the subpopulations.
 - Tackle bigger instances of the RSMP problem

Thank you for your attention