Inserting Active Components of Particle Swarm Optimization in Cellular Genetic Algorithms

Enrique Alba

eat@lcc.uma.es http://www.lcc.uma.es/~eat Universidad de Málaga

&

Andrea Villagra

avillagra@uaco.unpa.edu.ar

Universidad Nacional de la Patagonia Austral

Enrique Alba Active Components of PSO in cGA

1 of 16

Proposal

Table of Contents

2 Proposal

3 Experiments

Conclusions

Motivation

- cGA intrinsic behavior yields a good start efficacy but the basic algorithm needs customization and improvement
- New cGA models should focus in improving both efficiency and efficacy
- There are many methods to do so: selection operator, local search, parallelism, neighborhood definition, population shape, ...
- Hybridization between algorithms is always an important research field, but: can we do it in a structured and innovative way ???
- Combinations of algorithms have provided very powerful search algorithms, but: are these algorithms the actual driving forces or there exist some active components in them that make the difference?

Concepts of PSO in cGA

- Personal and social information is maintained
- A mutation operator based in PSO is used inside the cGA
- Two hybrid algorithms:
 - hyCP-local: based on local PSO neighborhood
 - hyCP-global: based on global PSO information from the global best

Concepts of PSO into a cGA

hybrid algorithms:

hycP-local

Information from the local neighborhood (NEWS)

 $v_{id}(t) = v_{id}(t-1) + \varphi_1(p_{id} - x_{id}(t-1)) + \varphi_2(p_{gd} - x_{id}(t-1))$

$$x_{id}(t) = x_{id}(t-1) + v_{id}(t)$$

hyCP-global

Information from the global best

$$v_{id}(t) = v_{id}(t-1) + \varphi_1(p_{id} - x_{id}(t-1)) + \varphi_2(p_{gd} - x_{id}(t-1))$$

$$x_{id}(t) = x_{id}(t-1) + v_{id}(t)$$

Details on the Algorithms

Algorithm 1 Pseudocode of a cGA

- 1: Steps-Up(cga) // Algorithm parameters in 'cga'
- 2: for $s \longleftarrow 1$ to MAX_STEPS do
- 3: for $x \leftarrow 1$ to WIDTH do
- 4: for $y \leftarrow 1$ to HEIGHT do
- 5: $nList \leftarrow ComputeNeigh (cga, position(x, y));$
- 6: $parent1 \leftarrow IndividualAt(cga, position(x, y));$
- 7: $parent2 \leftarrow LocalSelect(nList);$
- 8: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom); // Recombination
- 9: BitFlip(cga.Pm,auxInd.chrom); // Mutation
- 10: $auxInd.fit \leftarrow cga.Fit(Decode(auxInd.chrom));$
- 11: InsertNewInd(position(x,y),auxInd,[ifBetter | always],cga, auxPop);
- 12: **end for**
- 13: **end for**
- 14: cga.pop \leftarrow auxPop;
- 15: UpdateStatistics(cga)

16: end for

Details on the Algorithms

Algorithm 1 Pseudocode of hyCP-local

- 1: Steps-Up(cga) // Algorithm parameters in 'cga'
- 2: for $s \longleftarrow 1$ to MAX_STEPS do
- 3: for $x \leftarrow 1$ to WIDTH do
- 4: for $y \leftarrow 1$ to HEIGHT do
- 5: $nList \leftarrow ComputeNeigh (cga, position(x, y));$
- 6: $parent1 \leftarrow IndividualAt(cga, position(x, y));$
- 7: $parent2 \leftarrow LocalSelect(nList);$
- 8: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom); // Recombination
- 9: cga.Pm,auxInd.chrom); // Mutation MutLPSO (Pm,auxInd.chrom, velocity);
- 10: $auxInd.fit \leftarrow cga.Fit(Decode(auxInd.chrom));$
- 11: InsertNewInd(position(x,y),auxInd,[ifBetter | always],cga, auxPop);
- 12: **end for**
- 13: **end for**
- 14: cga.pop \leftarrow auxPop;
- 15: UpdateStatistics(cga)

16: end for

Details on the Algorithms

Algorithm 1 Pseudocode of a hyCP-global

- 1: Steps-Up(cga) // Algorithm parameters in 'cga'
- 2: for $s \longleftarrow 1$ to MAX_STEPS do
- 3: for $x \leftarrow 1$ to WIDTH do
- 4: for $y \leftarrow 1$ to HEIGHT do
- 5: $nList \leftarrow ComputeNeigh (cga, position(x, y));$
- 6: $parent1 \leftarrow IndividualAt(cga, position(x, y));$
- 7: $parent2 \leftarrow LocalSelect(nList);$
- 8: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom); // Recombination
- 9: cga.Pm,auxInd.chrom); // Mutation MutGPSO (Pm,auxInd.chrom, velocity);
- 10: $auxInd.fit \leftarrow cga.Fit(Decode(auxInd.chrom));$
- 11: InsertNewInd(position(x,y),auxInd,[ifBetter | always],cga, auxPop);
- 12: **end for**
- 13: **end for**
- 14: cga.pop \leftarrow auxPop;
- 15: UpdateStatistics(cga)

16: end for

Problems and parameters

• Representative set with epistasis, multimodality, and deception

• Parameterization used in our algorithms:

Parameter	Value
Population Size	400 individuals
Selection of Parents	self + CS
Recombination	DPX1, Pc = 1.0
Bit Mutation	(Bit-fip, or mutLPSO or mutGPSO), Pm = 1/L
Replacement	Replace if equal or better

Results: Hit Percentage

% Success						
Problem	hyCP-local	hyCP-global	cGA			
ECC	100	100	100			
P-PEAKS	100	100	100			
MAXCUT	100	100	100			
MMDP	59	61	54			
FMS	93	81	25			
COUNTSAT	97	36	0			

The success rate for hyCP-local is higher (or at least equal in a few cases) than for the other algorithms

EVOLV

Success Percentage Per Problem

Results: Computational Effort

Evaluations						
Problem	hyCP-local	hyCP-global	cGA			
ECC	153 490	157 048	152 662			
P-PEAKS	37 655	37 917	39 214			
MAXCUT	7 890	6 966	8 303			
MMDP	200 800	211 200	144 000			
FMS	485 680	424 987	580 080			
COUNTSAT	224 800	577 200	1 000 000			

Our hybrid algorithms reduce the number of evaluations required to reach the optimum

Time (ms)						
Problem	hyCP-local	hyCP-global	cGA			
ECC	4 116	4 223	2 569			
P-PEAKS	3 359	3 345	3 285			
MAXCUT	51	50	48			
MMDP	6 176	6 457	2 295			
FMS	29 497	25 920	26 287			
COUNTSAT	1 491	3 468	2 342			

• cGA still requires less time to reach the optimum: damn it!

Conclusions and Further Work

- In this work we intend to generate new functional an efficient hybrid algorithms in a structured way
- Indirectly, we try to define what are the actual active components in several metaheuristics
- We incorporate a mutation based on PSO: hyCP-local and hyCP-global
- In all analyzed problems our hybrids obtained equal or better results than the obtained without them (except in real time)
- These results encourage us to expand the set of problems discussed in future work and to incorporate other active components from other metaheuristics: temperature of SA and probability from ACO

Questions and Comments

Málaga

http://www.lcc.uma.es/~eat

Enrique Alba Active Components of PSO in cGA