

Flexible and Fine-Grain Decision Support Based on Data Interpretation

A Case Study with Cadral Decision Support System

Y. Didry, O. Parisot, T. Tamisier, J. Wax Gabriel Lippmann Public Research Center, Belvaux, Grand-Duchy of Luxembourg

www.lippmann.lu - tamisier@lippmann.lu

Context (1) family benefits complexity

The National Family Benefits Fund

takes care of 100,000 families & 160,000 individuals

faces a constant augmentation in number & complexity of the beneficiaries

provides birth, household, education aids

applies European acts & legislation, bi-lateral agreements, national law

Context (2) Grand-Duchy of Luxembourg

open & active economy (agriculture, industry, services...)

40% foreigners (from Portugal, Italy, France, Eastern Europe...)

130,000 cross border workers (from France, Belgium, Germany)

450,000 inhabitants

Cadral Overview (1)

2 sides of a use-case

In Luxembourg, Cadral handles the acceptation / refusal of applications filled by the public for family benefits

Integration side

Workflow processing side

Cadral Overview (2)

utilization modes

Problem solving

CADRAL basic mode for reliable, efficient, fair processing within complex legal frameworks

> Cadral Knowledge Base

Mass-simulation

Use CADRAL for socio-economic predictions, impact measurements with respect to demographic, legal evolutions

Validation

Knowledge modeled into Cadral procedures **can be checked** with respect to logic & behavioral properties

On the fly assistant

CADRAL helps asking the right thing to the right person at the right moment, e.g. when completing paper/online forms

Developed with operational (integrated into the Luxembourg's Family Benefit Fund infrastructure) and academic (PhD hosting) partnerships,

Cadral is a decision support framework tailored to fits operational requirements, through:

- business oriented procedural knowledge model
- flexible reasoning kernel
- data interpretation to refine computed results

Cadral Architecture (2)

a business expert system

Procedural Model (1) reasoning schemes

	Backward Reasoning	Forward Reasoning
Setting	Specialized	Intuitive (ifthen rules)
Behavior	Logic	Complex (erratic)
Results	Efficient find of 1 solution	Exhaustive search

Procedural Model (2)

rule & illustration

Procedural Model (3) Hierarchical Graph Editor

ANGLE V	Ajout Edition Propriétés du noeud Libelle Other cases Form Form ELLIPSE Color Actions Image: Color Actions Historiques Historiques Historiques Historiques #Noeud:untitled(1)->Age test *Noeud:untitled(1)->Age test *Noeud:untitled(2)-Scollege ~Noeud:untitled(2)-Scollege ~Noeud:untitled(2)-Scollege *Noeud:High School High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved High School moved

Procedural Model (4)

knowledge management

	sp { propose*enfant-mineur	sp { apply*enfant-mineur
RULE child	(state <s> ^io.input-link <il> -^enfant-mineur)</il></s>	(state <s> ^operator.name enfant-mineur)</s>
PRE test-age	(<s> ^test-age oui)</s>	>
IN age < 18	(<il> ^enfant.age < 18)</il>	(<s> ^majeur-non oui)</s>
THEN	>	}
POST child	(<s> ^operator <o> + =)</o></s>	
	(<o> ^name enfant-mineur)</o>	sp { apply*enfant-majeur
END	}	(state <s> ^operator.name enfant-majeur)</s>
		>
RULE adult Lex & Y	sp { propose*enfant-majeur	(<s> ^majeur-oui oui)</s>
PRE test-age compilat	ion (state <s> ^io.input-link <il> -^enfant-majeur)</il></s>	}
IN age >= 18	(<s> ^test-age oui)</s>	
THFN	(<il> ^enfant.age >= 18)</il>	Cadral uses
	>	the Soar architecture
rosi adult	(<s> ^operator <o> + =)</o></s>	for Knowledge-based
END	(<o> ^name enfant-majeur)</o>	systems
	}	

Procedural Model (5)

effective compilation

Implementation (1)

Cadral core API

Generic Java API used to define concepts

- engines: for learning, data interpretation, resolution
- datasets: working memory data with operational contexts
- data encoders/decoders: depends on engines and datasets

Cadral Core integrates proven reasoning technologies

- Soar: general cognitive architecture library http://sitemaker.umich.edu/soar
- Encog: neural network library http://www.heatonresearch.com/encog
- Weka: machine learning library http://www.cs.waikato.ac.nz/~ml/weka/

Implementation (2)

engines' integration

Experiments (1)

Business pre-processing

Goal: Cadral Core for automatic recognition of Benefit Claims' complexity

- Selection of a classification engine (J48 in Weka: decision tree with pruning)
- Building a pertinent dataset
 - Choice of pertinent criteria (children age, family situation...)
 - Extract & encode data from CNPF database
 - Tag problematic claims with the help of operational/maintenance team
- Train the classification engine on the dataset
- Result: classification of the claims according to their complexity before their processing

Limits & perspectives

- Available: a binary, rigid classification
- Needs: clustering for automatic determination of profiles according to specificities of datasets

Interesting points

- Business knowledge essential for initialisation with right criteria and datasets
- Business knowledge essential to interpret results: decision support helps the business but does not replace it

Experiments (2) monitoring software engineering

Sonar: open platform to manage code quality

<u>http://www.sonarsource.org/</u>

Goal: using Cadral Core to discover quality similarities between CRP-GL projects and major open source projects

- Data extraction and learning from demo Sonar instance -> X clusters <u>http://nemo.sonarsource.org/</u>
- Data extraction from CRP-GL Sonar instance and trying to link projects to clusters
- Use weka clustering (in progress)

Interesting points

- Metrics selection (ex: is 'number of line code' useful/pertinent?)
- Clusters discovery (are clusters significant?)